The NCSU Design Kit for IC Fabrication through MOSIS

Toby Schaffer Andy Stanaski Alan Glaser Paul Franzon

September 16, 1998

Introduction

The North Carolina State University Cadence Design Kit (CDK) is a collection of technology files, custom SKILL routines, parts libraries, and Diva rules files aimed at facilitating full-custom CMOS IC design through MOSIS. The CDK is used at N.C. State University in both teaching and research, and it has been used to fabricate working chips. This paper describes how to obtain and install the CDK, followed by a discussion of the CDK's features. A summary of the CDK concludes the paper.

Installing the CDK

The CDK is very simple to install. It, as well as its patches, is distributed as a compressed tar file that extracts into the $CDS_ROOT/local directory. (Future versions will allow for more flexibility as to where the kit can be installed.) The CDK is distributed exclusively via the World Wide Web at the URL http://www.ece.ncsu.edu/cadence/CDK.html. From this page there are links to:

- view a brief listing of the CDK's features
- download the latest complete CDK
- download patches

Once the file is downloaded, copy it to $CDS_ROOT, the root of your Cadence installation hierarchy. Uncompress and untar the kit, which will place its files under the local directory. Then run the setup.pl Perl program, located in $CDS_ROOT/local/bin, which copies startup files to the appropriate locations and installs necessary symbolic links, or you can follow the instructions and perform these steps manually.

CDK Organization

This section provides a high-level overview of the contents of the CDK. All pathnames are relative to the $CDS_ROOT directory.

Documentation

CDK documentation is located in the local/doc tree. All custom forms have OpenBook screens accessible through the form's “Help” button, and fairly-detailed documentation, in HTML format, describing the CDK is included.
Technology Files and Diva Rules Files

The heart of the library creation is in the local/techfile directory. This directory contains the files which define the mask layers and their appearances and properties, as well as parameters used at library creation time which set the value of lambda, the technology code, and the availability of process-dependent layers (layers that are not common to all MOSIS processes). The example below shows the parameters for the HP CMOS10QA process (which is 0.35µm actual and 0.4µm drawn):

; scmos-scn4m_subm-02.tf for HP CMOS10Q 0.35u

controls(
 techParams(
 (lambda 0.2)
 (technology "SCN4M_SUBM")
 (metal3Available t)
 (metal4Available t)
)
)

The structure of these files follows the flow described in the OpenBook section Technology File and Display Resource File User Guide.

The Diva verification rules files are also located in the local/techfile directory. These are discussed later in the section on Diva.

Technology Libraries

In local/lib, one technology library is provided for each MOSIS CMOS process. These libraries contain layout parameterized cells (pcells) and provide users sitewide a set of reference libraries to which they can link when creating their own project libraries. The technology libraries are generated by choosing the “Compile Tech File” option during library creation, discussed in the “Design Framework” section below.

Standard Parts Libraries

Also in local/lib are the libraries NCSU_AnalogParts, NCSU_DigitalParts and NCSU_Sheets_8ths, which contain common analog and digital parts symbols, Verilog primitives, and example sheet borders. Originating from the stock sample, analogLib and US_8ths libraries, they also include some other higher-level parts, such as multiplexers and flip-flops. These libraries were created to consolidate the commonly-used parts in a way that would allow us to add parts (e.g. multiplexers) and modify the parts with custom component descriptor formats (CDFs) while keeping the original distribution libraries pristine.

These parts are technology-independent. SKILL callbacks triggered by the CDFs assign parameter values (for example, minimum width and model name for transistors) to the parts only when they are placed in a schematic. There is no layout data in these libraries.

Device Models

The local/models directory tree contains transistor model files. The CDK includes all the models we are allowed to distribute (HSPICE level 13 and Spectre level 4), which are obtainable from the MOSIS web site; for more detailed (HSPICE level 39) models contact MOSIS directly. The CDK sets the correct environment variables so these models are found automatically when doing simulation through Analog Artist.
SKILL Code

The local/skill directory contains all the custom SKILL code — forms, menus, CDF callbacks, and pcell definitions. This code, along with the Diva rules, provides the large majority of the CDK’s added value. There is too much to describe here; see local/skill/contents for a very brief description of each file.

RCS is used to implement revision control during development. However, only the most recent versions of the files are distributed with the CDK.

Of special note is the file local/skill/globalData.il. As the name implies, it defines routines and variables that are used by multiple parts of the CDK. One example is the NCSU_techData array, which maps a process to its technology code, process features and device sizes. One entry from this array is shown in the SKILL fragment below:

```tcl
NCSU_techData[ "HP 0.4u CMOS10QA (4 metal)" ] =
    make_globalEntry(?
        ?techFile "scmos_scn4m_subm_02.tf"
        ?techLib "hp10_TechLib"
        ?mosisCode "SCN4M_SUBM"
        ?lambda "0.2"
        ?minL 0.4
        ?minW 0.6
        ?gridRes 0.1
        ?submicronRules t
        ?fetModelPrefix "hp10"
    )
```

The NCSU_techData array is accessed by the library creation routines, Diva rules files and CDF callbacks.

Miscellaneous

There are also many files that don’t fit into any of the above categories, such as setup files (e.g., cdseuv) that get read at startup time and a file of bindkeys (originally obtained from SourceLink) that give common key bindings to both Composer and Virtuoso.

One useful program in particular is local/bin/xmsg, a simple Tcl/Tk script. Called from the site cdsinit file, it pops up a window with a text message and a dismiss button. It’s good for displaying short messages that all users need to see at least once.

CDK Functionality

The CDK provides customizations for the Design Framework, Composer, Analog Artist, Verilog, Virtuoso and Diva. This section describes the highlights of these customizations by tool.

Design Framework

As of this writing, MOSIS provides access to seven CMOS processes, with at least one more imminent. Additionally, some of the individual processes have options associated with them. For example, when using the HP CMOS14TB process MOSIS asks that the designer specify if two or three metals are used, and if
the linear capacitor well implant is to be used. For most new users, especially undergraduates, this can be confusing. The CDK attempts to hide some of this detail by greatly simplifying library creation, as shown in Fig. 1.

The user first types the name and directory of the new library. If the library is to include mask data (i.e., layout), the user also chooses the appropriate process by name rather than by technology code. As mentioned above, the CDK includes a technology library for each MOSIS CMOS process; by simply clicking the appropriate button, the user either attaches the new library to one of these pre-existing technology libraries or compiles the new library as its own technology library.

The selection of a given process allows access to only the mask layers available in that process. For example, layouts done in HP’s four-metal process CMOS10QA can use metal 4, while layouts done in HP’s triple-metal CMOS14TB cannot. By making extensive use of xxxAvailable variables (where xxx is replaced by a layername, as previously shown in the example controls class) only layers that actually exist in the library’s process are defined in the library’s technology files.

After the library is created, the CDK creates links in the library’s directory to the sitewide Diva rules files. In a similar vein, the CDK replaces the stock form for attaching a technology library to a design library with one that refers to the MOSIS CMOS processes by name.

Composer (schematic entry)

Already mentioned are the NCSU Analog Parts and NCSU Digital Parts libraries, which contain common parts—e.g., logic gates, transistors, and RLC components—used for schematic capture and simulations. One way these parts assist in schematic entry is through their CDFs, which mainly affect the transistors. These CDFs:

- enforce gridding; i.e., transistor widths and lengths must be a multiple of one-half lambda
- enforce minimum transistor widths and lengths
- automatically select the correct SPICE model based on the library’s technology
- use a simple heuristic to estimate the source and drain areas and perimeters
- set properties so that the user can take advantage of the technology library’s pcells when creating a layout with DLE

Back annotation from layout is not supported at this time but is on the todo list.

Analog Artist (circuit simulation)

Circuit simulation is done through Analog Artist. There are relatively few customizations with respect to this tool. As noted previously, the CDK includes several directories containing transistor models, and the CDK’s startup files set the necessary variables so Artist can find these directories.

Verilog (digital simulation)

To assist digital simulations we provide Verilog primitives with the logic gates in the NCSU Digital Parts library. Our Verilog hierarchy of views uses “functional” parts as leaf nodes, i.e., logic gates, and “behavioral” parts as more abstract blocks. The simulation setup file `simrc` has been set up to netlist Verilog with this hierarchy.

Virtuoso (mask design)

This section describes the CDK components affecting mask design with Virtuoso.

Mask Layers

All mask layers for all MOSIS SCMOS processes are supported, along with the optional layers that are not common to all processes, such as Orbit’s layers for NPN BJTs and HP’s fourth metal. Adding support for a new process is fairly straightforward (especially if the process does not introduce any new mask layers) and is described in the CDK documentation. NCSU also releases patches to bring existing CDK installations up-to-date as new MOSIS processes are announced.

In the `local/doc` directory of the CDK is the file `layerInfo.html`, which lists the Cadence layer name, a description, the GDSII number and CIF abbreviation of all SCMOS layers as well as the process(es) for which they are valid.

As discussed above, the CDK eliminates the temptation to use layers which do not exist in the technology used by a design library by not defining those layers in the library when it is created.

Parameterized Cells

Parameterized cells are a popular and powerful way to assist in full-custom layout by eliminating the need to manually draw every polygon of common structures such as FETs and contacts. Included in each pre-compiled MOSIS technology library are pcells for the following constructs (where applicable):

- NFET/PFET
- N/P ohmic contact
- metal1 - N/P diffusion contact
- metal1 - poly/poly2 contact
- metal2 - metal1 contact
- metal3 - metal2 contact
- metal4 - metal3 contact
- thin-oxide linear capacitor

The FET parameters include the number of poly gates (in either serial or parallel configurations) as well as width and length. The contact p-cells are number of rows and columns; all contact pitches are the minimum allowed by the library’s technology. The thin-oxide capacitor, currently available only in the HP CMOS14TB process, can be described by either total capacitance desired or by width and height.

All p-cells are implemented in hand-written SKILL except for the capacitor, which was implemented with the Virtuoso p-cell editor.

As mentioned previously, transistors from the NCSU Analog Parts library are automatically set to use these FET p-cells when creating devices via DLE.

Other Functionality

The following are some of the miscellaneous features the CDK brings to Virtuoso:

- Symbolic contacts are provided to allow path-stitching with the path tool.
- The label creation process is similar to Composer’s, i.e., multiple labels can be typed into the form at one time, and array notation is allowed, e.g., `dataBus[7:0]` will place eight separate labels. The label creation form is shown in Fig. 2.

![Create Labels](image)

Figure 2: Label Creation Form

- Elements (shapes and instances) can be selected and aligned to make their edges flush with a selected object.
- In the eye candy department, the user can import to layout JPEG images (handy for scanned-in logos or signatures) and text strings in any available X Window font (quite useful for creating on-chip labels and markers). These capabilities are provided by external programs, written in C and included with the CDK in source form, accessible through the NCSU menu. The text import form is illustrated in Fig. 3.
Especially useful for 3-D technologies such as Micro-Electro-Mechanical Systems (MEMS) processes, and very educational for new CMOS designers, the user can draw an arbitrary cutline in a layout and extract a cross-section across that line. This process is illustrated in Figs. 4 and 5, which are the top and side view respectively of a capacitively-coupled contactless MEMS TBT switch.

![MEMS TBT switch (top view)](image)

Figure 4: MEMS TBT switch (top view)

Diva (verification)

All verification (DRC, extraction, and LVS) is done with Diva. The rules files are stored under the standard filenames `divaDRC.rul`, `divaEXT.rul`, and `divaLVS.rul` in the `local/techfile` directory.
DRC

All rules from the *MOSIS SCMOS User’s Manual* (rev. 7.2) are checked. The value of lambda is stored in the `globalData.il` file as previously mentioned and used by Diva when performing DRC checks. In addition to the SCMOS rules, a few extra rules are implemented that are not in the SCMOS manual but should be followed anyway, such as not allowing p-type select inside cell.

In the library `MOSIS.Layout.Test` is a layout, based on one provided by MOSIS, which consists of a group of DRC-test structures which exercise every design rule.

Extraction

The following circuit elements can be extracted:

- FETs
- vertical NPNs
- PN/NP diodes
- poly-metal/thin-ox/polycap capacitors

Parasitic capacitors can be extracted as well. A single SKILL variable sets the threshold below which parasitic capacitances are ignored. Parasitic capacitance values are based on data published on the MOSIS Web site.

Extraction of resistors and parasitic resistors is on the todo list.

IVS

IVS is supported. Via a form accessible through the NCSU menu and shown in Fig. 6, the user can select the desired IVS rules easily on a library-by-library basis.

Conclusions

This paper presented a summary and description of the North Carolina State University Cadence Design Kit. An ongoing project, the CDK attempts to provide a user-friendly and efficient means to do full-custom CMOS IC design through MOSIS. It includes pre-compiled technology libraries, Diva verification rules,
Figure 6: IVS Rules Selection Form

HSPICE/Spectre transistor models, layout cells, and other various usability enhancements. The latest version of and patches for the NCSU CDK are available at http://www.ece.ncsu.edu/cadence/CDK.html.

A PostScript version of this paper, as well as the slides presented at the 1998 Cadence User Group Conference, can be obtained at http://www.ece.ncsu.edu/cadence/CUG1998.

Acknowledgements

The Diva DRC and extraction rules, as well as the base CMOS layers’ appearances, are based on files originally written by Jeffrey Gealow and Jen Lloyd, of MIT at the time. David Winick of NCSU wrote the 3-D cross-section extraction code. Text-to-layout conversion is done with the txt2layout package originally written by Jeffrey Gealow and others.